Assignment 10

Coverage: 16.5 (skip"Implicit Surfaces") and 16.6.

Exercises: 16.5 no $4,8,10,13,20,24,31,32,33,38,42,45 ; 16.6$ no $4,8,10,13,24,27,32,38$.
Hand in 16.5 no $8,31,33 ; 16.6$ no $8,13,38$ by April 18.

Supplementary Problems

1. Consider the parametric surface

$$
\mathbf{r}(u, v)=(u+6 v,-2 u-12 v+5,-1), \quad(u, v) \in[0,1] \times[0,1]
$$

Is it a smooth surface? Describe its image. Recall that by definition a parametric surface is smooth if \mathbf{r} is continuously differentiable and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is linearly independent in the interior of the region of definition.
2. Let S be the graph $\{(x, y, f(x, y)):(x, y) \in D\}$ where D is a plane region. Show that its surface area is given by

$$
\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A(x, y)
$$

3. Let S be the surface of revolution obtained by rotating $(\varphi(z), z), \varphi(z)>0, z \in[a, b]$ around the z-axis. Show that its surface area is given by

$$
2 \pi \int_{a}^{b} \varphi(z) \sqrt{1+\varphi^{\prime 2}(z)} d z
$$

